Intelligent Destruction


Intelligent Destruction is a thorough data destruction method for SSD that fully comply with the military standard. FLEXXON 2.5” SSD supports Intelligent Destruction, which could destroy all the data quickly and completely.

The P13 pin on the SATA connector is defined as an intelligent destruction trigger signal, which is triggered by an active-low signal as displayed in Figure 1. In a low-level pulse of the width of at least 2s, the data destruction process is executed at any working status of SSD. The data cannot be recovered after intelligent destruction but the SSD can be reused after running a format operation. P14 is defined as monitoring pin during the intelligent destruction. The data destruction process can be viewed by connecting a LED to the positive power supply.

FLEXXON SSD applies three-level destruction method in data destruction.

Step 1: Erase the key

The key for each SSD is generated randomly, therefore the data becomes ciphertext after the data is being destroyed. As the key file size is small, the process to erase the file is within 5ms only.

Step 2: Erase the mapping table

The mapping table is the most crucial system file for SSD, whose size is relative to the capacity of SSD. The size of the mapping table for a regular SSD is commonly in the range of 1MB ~ 1GB. After the removal of the mapping table, the data stored becomes meaningless 0 and 1. It cannot be restructured into a file or other valid data. It requires less than 1 second for the erase of the mapping table.

Step 3: Erase the data

Different from magnetic medium, NAND Flash is used as SSD storage medium. During data destruction, the deletion of storage units does not need to be taken place one by one. The positive charges are inserted into block to remove the negative charges and therefore quickly erase the data.

After full disk data erase, SSD will have no usable data.

Different from magnetic medium, the storage medium of SSD is Nand Flash without memory effect. The data can be reliably and thoroughly removed after this step.

Step 4: Repeatedly erase data.

Data erasure also requires to be carried out repeatedly after the data is removed, according to the military data destruction standards.

For more information, Please CONTACT OUR TEAM

Power Loss Protection


Preventing data loss when encountering sudden power loss is an important topic in SSD industry.

FLEXXON designs SSD with pFail protection circuit. It has a voltage drop detector, so when SSD detects the host power dropping, SSD’s pFail protection circuit will be triggered and begin providing power to SSD. The SSD then will start to flush cached data from DRAM memory to NAND flash memory in order to preserve data integrity and prevent data loss.

Without PLP, voltage will drop soon and all data in the buffer will be lost at T1.

By PLP function (HW and FW), SSD would be ready for shutdown before T2.

 

For more information, Please CONTACT OUR TEAM

Enexpected Power Loss happens: When SSD detects the host power dropping, the pFail protection circuit to the SSD while if flushes cached data from DRAM to NAND

Enhanced Data Reliability of Memory Cards


Auto-Read Refresh Management

The repeated reads of static data may  induce bit errors.

When bit errors are approaching the pre-set threshold level, firmware will auto-refresh the bit errors and move the data to a new block, reducing the chance of uncorrectable errors.

Advanced Wear Leveling

During power interrupted writes, uncorrectable ECC (UECC) may occur, due to pair page issues of MLC flash.

Upon power recovery, firmware will move the valid data before the UECC page to the new block, minimizing data loss.

 

For more information, Please CONTACT OUR TEAM

Power Loss Management

Under general FAT format, wear leveling will be triggered by FAT update during the operation.

For special OS, such as Linux or customized OS, advanced mode can be set to optimize the wear leveling.

LDPC


SSD is transitioning from BCH (Bose-Chaudhuri-Hocquenghem) to LDPC (Low Density Parity Check).

LDPC codes allow SSD to correct more errors for the same ratio of user data to ECC parity.

FLEXXON XTREME SSD supports LDPC.

  BCH Traditional LDPC FLEXXON LDPC
Decoding Algorithm Algebraic Based Probability Based Probability Based
Correction Strength Guaranteed Not Guaranteed Not Guaranteed
Soft Bit Decoding Difficult Easy Easy
Hard Bit Decoding Perf. BCH ~ LDPC BCH ~ LDPC BCH ~ LDPC
Soft Bit Decoding Perf. 2X~3X better than HB 2X~3X better than HB
Cost (Gate Count) Low 5X more than BCH consumes only 50% of tranditional LDPC design
Power Consumption Low 3X higher than BCH 10X lower than tranditional LDPC design

For more information, Please CONTACT OUR TEAM

Pseudo SLC


Empowered by firmware technology, FLEXXON provides Pseudo SLC solution that enable high-quality MLC flash to perform in SLC mode for better performance, reliability and endurance over basic MLC flash memory – yet without the high price of an SLC.

NAND Flash Type Bit/Cell P/E Cycle W/R Speed Data Retention Price
SLC 1 60,000 ~ 100,000 Best Best Expensive
Pseudo SLC 1 20,000 Great Very Good Between SLC and MLC
MLC 2 3,000 Good Good Cheap
TLC 3 500 ~ 1,000 Worst Average Lowest

For more information, Please CONTACT OUR TEAM

WORM Card


The WORM (Write-Once-Read-Many) SD card allows the data to be permanently saved and unaltered for read access after a one-time content programming.

The saved data will be completely unalterable regardless of any commands from the host. Because it is a non-rewritable, non erasable data storage media, accidental or intentional erasure of data is limited. It also provides the benefit of time and date authentication which facilitates quick search and retrieval of archived files, and can provide extra security protection for stored data.

 

For more information, Please CONTACT OUR TEAM